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A fully 3-dimensional Global Assimilative Ionospheric Model (GAIM) is currently being 
developed by a joint University of Southern California and Jet Propulsion Laboratory 
(JPL) team.  To estimate the electron density on a global grid, GAIM uses a first-
principles ionospheric physics model  and one of two estimation techniques: the Kalman 
filter and 4DVAR (4-Dimensional VARiational).  Because of the large dimension of the 
state (i.e., electron density on a global 3-D grid), implementation of a full Kalman filter is 
not computationally feasible.  Therefore, we have implemented a band-limited Kalman in 
which a full time propagation of the covariance is performed but only a portion of the 
covariance matrix is retained.  The retained elements are determined based on assumed 
physical correlation lengths in the ionosphere.  The effectiveness of ground GPS data for 
specifying the ionosphere is assessed by assimilating slant Total Electron Content (TEC) 
data from 98 sites into the GAIM Kalman filter and validating the retrieved electron 
density field against independent measurements.  A series of GAIM retrievals are 
presented and validated by comparisons to JPL’s Global Ionospheric Maps (GIM) of 
vertical TEC (VTEC) and VTEC measurements from TOPEX.  A statistical evaluation of 
GAIM and GIM against TOPEX VTEC indicates that GAIM accuracy is comparable or 
superior to GIM. 

 

1. Introduction 
 
The increasing reliance of our civilization on space technologies has made it clear that creating a 
“space weather” monitoring capability that provides timely and accurate space environment 
observations, specifications, monitoring and forecasting, is essential for the safe operation of 
various defense and commercial systems.  The degree of success in creating such a “space 
weather” system depends mostly on (1) the ability to obtain global and continuous measurements 
related to the space environment and (2) the ability to incorporate these various measurements 
into a physical model in a self-consistent manner. 
 
The state of monitoring and forecasting space weather today can be compared to that of 
conventional weather monitoring and forecasting almost half a century ago, when observations 
were fragmentary in space and time, and means of interpreting them were rudimentary.  The 
global and continuous observations obtained in the lower atmosphere (e.g. from weather 
satellites and radiosondes), the ability to obtain these observations in a timely manner, and the 
advances made in global weather modeling and in data assimilation algorithms are the main 
factors that have brought numerical weather prediction (NWP) models to their current level of 
success. 
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On the space environment front, we are witnessing a new era.  Significant efforts are being 
planned to collect further information on solar activity and disturbances in the solar wind and the 
magnetosphere, and data on the upper atmosphere and ionosphere/plasmasphere are becoming 
truly global and continuous.  A case in point is the Global Positioning System (GPS) in which a 
global network of over 100 ground receivers and regional networks of hundreds to over one 
thousand receivers created the unprecedented possibility of producing global maps of vertical 
total electron content (TEC) and ionospheric irregularities in near real-time updated sub-hourly 
[Pi et al., 1997; Mannucci et al., 1998].  Moreover, within the next few years the number of flight 
receivers tracking GPS in a limb-viewing geometry for ionospheric occultations [Leitinger et al., 
1997; Hajj et al., 1998; Schreiner et al., 1999] will increase to nearly a dozen, providing an 
extremely dense global set of horizontal cuts through the ionosphere and allowing for accurate 
4D global mapping of electron density [e.g., Hajj et al., 2000].    This data set, along with other 
data such as UV airglow radiances [e.g., Dymond et al., 2001] from current and future missions, 
provide a truly unprecedented global 3D coverage of the upper atmosphere and ionosphere. 

Our objective in this paper is to describe the development of a Global Assimilative Ionospheric 
Model (GAIM) capable of assimilating a variety of data types including: (1) slant TEC (the 
integral of electron density along the transmitter-receiver line-of-sight) measurements from GPS 
ground receivers, (2) change in TEC measurements taken from a low-Earth orbiter (LEO) 
tracking GPS satellites at positive and negative elevations (i.e., during GPS-LEO occultations), 
(3) in situ measurements of electron density, and (4) UV airglow radiances.  Similar to neutral 
atmospheric weather models — which assimilate, solve for, and predict 4D fields (3 spatial and 1 
temporal) of the atmospheric state parameters such as temperature, specific humidity and wind 
— GAIM assimilates, solves for, and predicts the electron density in the ionosphere and some of 
the underlying driving forces (“drivers”) such as production rates, dynamo electric fields, and 
thermospheric neutral densities, temperatures and winds.  In doing this GAIM applies two 
different techniques: (1) the Kalman filter or some approximation thereof, and (2) a 4-
dimensional variational (4DVAR) technique.  The former technique is used to solve for the 
electron density in space and time while assuming the “drivers” to be known.  The 4DVAR 
technique solves for the “drivers” from which the electron density is obtained by solving the 
ionospheric model equations. 

Although the two approaches are currently disjoint, they can be combined in an operational 
scenario.  The 4DVAR technique is described elsewhere [Rosen et al., 2001; Pi et al., 2002].  
Other background description of GAIM can also be found in [Hajj et al., 2000;   Wang et al., 
2002].  In this paper, our focus is on the use of the Kalman filter for estimating the ionospheric 
electron density state and its implementation.  Even though the current GAIM is capable of 
assimilating a number of data sources as listed above, we limit the scope of this study to 
assimilating ground TEC measurements from a network of 98 globally distributed stations.  In 
doing so, we are following the general tradition and “wisdom” of the NWP community, which 
introduces new measurements into numerical weather models only after very careful 
examination and much evaluation.  The reason is that each data set has its own nuances and 
characteristics, and it could influence the data assimilation output in both positive or negative 
ways.  Therefore, optimal assimilation of any data type requires careful tuning of its error 
covariance, proper evaluation of the data representativeness errors, examination of the effect of 
the data on the analysis and its covariance, and examination of the consistency of the 
assumptions used in the Kalman filter and its solution. 
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In section 2 we review the formulation of the Kalman filter.  In section 3 we discuss some 
practical considerations related to the full Kalman filter such as memory requirements and 
number of operations, and introduce the band-limited Kalman filter.  In section 4, we describe 
the USC/JPL GAIM physics model and its solution grid.  In section 5 we present examples of 
ionospheric specifications from GAIM retrievals for May, 22-24, 2002 and validation results 
against GIM and TOPEX.  A conclusion is given in section 6.  

 
2. The Kalman filter 
 
We introduce the following definitions (commonly used in NWP): 

xk
t    The true state: a discrete representation of the true ionospheric state (density) 

at time k. 
xk

a = xk
t / mk

o , xk
f  The analysis: an estimate of xk

t  given measurements at time k, and a forecast 
xk

f  
xk

f = xk
t / mk −1

o  The forecast: an estimate of xk
t  given measurements up to time k – 1 

 
The observations mk

o are assumed to be related linearly to the true state xk
t  through an observation 

operator Hk via the equation   

 mk
o = Hk xk

t + εk
o
 (1) 

 εk
o = εk

m + ε k
r  (2) 

 
where εk

0  is the observational error which is composed of the measurement error, εk
m , and a 

representativeness error, εk
r .  The latter is due to the discretization in time and space of the 

solution for the ionospheric state [for a description of TEC representativeness error see Hajj et 
al., 2000].  For TEC measurements, the relation between the observations and the state is already 
linear.  For other measurements such UV radiances, a linearization procedure is first required to 
bring the relation between perturbations of the state and the measurements into the form of Eq. 
(1).  Similarly, a linearization procedure might be required to relate the true state at time k+1 to 
the true state at time k which can then be written in the form 

 xk+1
t = Ψk xk

t + εk
q  (3)  

where Ψk  is a forward model which can represented in a matrix form and εk
q  is a process noise 

which reflects our uncertainty in the forward model.  A linearization procedure is not required in 
our case since our dynamical model is already linear as we shall see later. 
 
If Mk, Rk and Qk are used to denote the measurement, representativeness and process noise 
covariances, respectively.  Then the Kalman filter can be summarized by the following set of 
Equations: 

 xk
a = xk

f + Kk mk
o − Hk xk

f( ) (4) 

 Kk = Pk
f Hk

T Hk Pk
f Hk

T + Rk + Mk( )−1
 (5) 
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 Pk
a = Pk

f − Kk HkPk
f  (6) 

 xk+1
f = Ψk xk

a  (7) 

 Pk +1
f = Ψk Pk

aΨk
T +Qk  (8) 

K is known as the Kalman gain, Pa and Pf are the analysis and forecast covariances, respectively.  
The vector mk

o − Hkxk
f( ) is known as the innovation vector, and it represents the observation 

vector minus the predicted observations based on the forecast state.  The Kalman filter was first 
introduced by [Kalman, 1960] and [Kalman and Bucy, 1961] for linear systems or ordinary 
differential equations.  An overview of the use of the Kalman filter for meteorology is given by 
[Ghil and Malanotte-Rizzoli, 1991;  Daley, 1991]. 
  
In the data assimilation process, during a given time step (indexed by k in Eqs. 1-8) the state is 
assumed to be constant (time steps are taken to be 12 minutes in our analysis below).  According 
to the Kalman formalism, at time t0 (the center of the first time interval), given a forecast (a 
priori) state, x0

f, a forecast state covariance, P0
f, and a set of observations, m0

O (collected in the 
interval t0 - ∆t, t0 + ∆t; ∆t=6 minutes in our case) with covariances R0 and M0, an improved 
estimate of the state (x0

a, the analysis) at time 0 can be obtained by adding the innovation vector 
operated upon by the Kalman gain to the forecast state (Eq. 4).  Moreover, because of the 
inclusion of the data during this time step, the forecast state covariance is reduced by the second 
term on the RHS of Eq. (6) to give the analysis state covariance at time 0.   Using a dynamical 
model of the ionosphere, we can then propagate the state from the first time step (0 min.) to the 
next one (12 min.) via the forward model, Ψk . (Eq. 7).  Similarly, we can propagate the analysis 
state covariance to the next time step via Eq. 8.  The process noise, Qk, in Eq. 8 reflects our 
uncertainty in the forward model.  The propagated state and covariance serve as the forecast for 
the next time step (12 min.) and the process repeats recursively. 
 
The process of assimilating data continuously and propagating the model at each time step in the 
manner described above is formally known as continuous data assimilation or four-dimensional 
data assimilation (not to be confused with 4-DVAR) [Daley, 1991].  In continuous data 
assimilation, the philosophy is that even if the initial condition and/or the model are imperfect, 
the accumulation of data will gradually force the model integration to the true ionospheric state.  
In continuous data assimilation, the analysis at time tk depends on all observations taken at t<tk.  
However, it is also possible, in principle, to include measurements taken at at t>tk when 
estimating the state at time  tk.  This can be accomplished, for example, by use of 4-DVAR [see, 
e.g., Ghil et al., 1997].  
 
For the Kalman filter to be an unbiased, maximum likelihood, minimum variance estimator, the 
measurements and state errors need to follow Gaussian statistics and be unbiased.  In that case, it 
is possible to show that the Kalman filter estimator ( xk

a ) also minimizes the cost functional 
[Bierman, 1977] 

 Jk = mk
o − Hkxk

t( )∑ Rk + Mk( )−1 mk
o − Hkxk

t( )T + xk
t − xk

f( )Pk
f −1

xk
t − xk

f( )T  (9) 

where the sum is over all the measurements during step k.  This equality can be used to check the 
consistency of our assumptions on the magnitude of the state and measurement covariances. 
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3. Approximations to the Kalman filter 
 
Since one of the main purposes of ionospheric data assimilation is to produce an ionospheric 
specification or prediction that is useful for space weather applications, timeliness is a key factor 
for a practical implementation of the Kalman filter.  Because of the large dimension of the state 
(i.e., the number of volume elements or voxels used to represent the ionospheric state which is of 
order N = 105 to 106), the full Kalman filter may not be computationally feasible in a timely 
manner.  This is true because of memory storage limitations and the number of computations 
required.  Saving the state covariance in memory requires saving N2 double precision numbers or  
80 to 8000 GByte.  On the other hand, updating f a

k kP P→  (Eq. 6) when assimilating M TEC 
measurements requires of order M×N2 operations, where each operation is defined as the 
evaluation of  A = B + C * D, where A, B, C and D are double precision numbers.  One 
operation involves a multiplication, a sum and extracting three numbers from high-speed storage 
and transferring the results to high-speed storage.  (The same covariance update requires M×N 
operations when assimilating in situ measurements.)  Furthermore, updating 1

a f
k kP P +→ (Eq. 8) 

requires of order N3 operations.  However, the latter transformation (Eq. 8) can be made of order 
c1N2 operations, where c1 is roughly constant, by taking advantage of the fact that diffusion takes 
place along magnetic flux tubes and using a common  grid to solve for the dynamical equations 
of the ionosphere and to represent the ionospheric state as described later.  In our implementation 
of GAIM and for a time step of 12 minutes, c1 is of order 1000. 
 
To appreciate the level of computations needed to perform the full Kalman, consider the 
following example.  A subset of 98 GPS stations from the continuously operational global 
network operated by the International GPS Service (IGS) collects nearly 700 5-minute-averaged 
line-of-sight TEC measurements every 12 minutes.  Assimilating these measurements and 
updating the state covariance every 12 minutes requires of order (700+1000)×N2 operations.  An 
Intel chip with 2GHz speed at best performs only 2x109 operations (as defined above) per 
second.  For N=105-106 and for a whole day run, this translates into 2×1015-2×1017 operations or 
12-1200 days.  High resolution operational numerical weather prediction models solve for ~107 
variables (Temperature, water vapor, zonal and meridional wind components on a 1 deg. × 1 deg. 
grid at 30 or more pressure levels).  This makes it clear why the full Kalman filter is prohibitive, 
even on the fastest parallel computers available to date.  This is also why the meteorological 
community has devised numerous approximations to the Kalman filter including optimal 
interpolation [e.g., Lorenc, 1981], reduced Kalman and band-limited Kalman.  For the purpose of 
this study, we will only consider the band-limited Kalman and we limit the state dimensions to 
order 104 voxels. 
 
In the band-limited approximation, all the Kalman steps (Eqs. 4-8) are performed as usual. 
However, the state covariance is truncated such that for a given voxel i, only a subset of the 
entire set of voxels will have non-zero correlation (i.e., Pij ≠ 0 for some preselected j∈  [1,N]).  In 
the simplest implementation of a band-limited Kalman, a given voxel i will have non-zero 
covariance only with voxels within a specified “correlation volume” as depicted in Fig. 1. 
 
It is worth noting that the name ‘band-limited’ is strictly valid only for a one dimensional system 
where the elements can be indexed such that the state covariance matrix is zero everywhere 
outside a band around the diagonal.  However, for higher dimensional systems, the covariance 
matrix will always have non-zero elements away from the diagonal terms (Fig. 2).  Therefore, 



 6

when referring to a band-limited Kalman, the term is used only in some abstract sense where in 
fact the actual state covariance is full, albeit very sparse. 
 
The band-limited Kalman reduces the number of operations required to update the covariance 
matrix from N2 to A×N, where A is the number of voxels within the correlation volume, Vcorr.  
For a correlation volume of a fixed size, A will grow linearly with N; however, the band-limited 
Kalman will still reduce the number of operations by a factor Vcorr/V, where V is the total 
volume of the modeled region.  This ratio can be of order 1/1000 or smaller making the band-
limited Kalman very manageable.  A realistic representation of the state covariance is paramount 
for obtaining accurate estimates of the state, especially when the data are sparse relative to the 
size of the state.   The band-limited Kalman filter maintains a sensible covariance while at the 
same time it reduces the number of computational steps substantially, thereby making it usable 
for global, medium-resolution, ionospheric runs. 
 
4. Forward Model 
 
A detailed description of the GAIM physical model is given in [Pi et al., 2002].  In summary, we 
solve the conservation of mass and momentum equations for a plasma, which account for 
production, loss, transport of the major ionization specie in the F-region (O+), neutral wind, and 
electric forcing.  These equations can be written as 

 ∂n
∂t

+ ∇⋅ nV( )= P − L( )  (10) 

 −∇ nkBT( )+ nMg + cn E +V × B( )− nMν V −U( )= 0  (11) 

where n is the ion number density; V is velocity; P and L are production and loss rates, 
respectively; kB is Boltzmann’s constant; T is temperature, M is molecular mass, g is 
gravitational acceleration, E and B are electric and magnetic fields respectively; ν is the collision 
frequency for momentum transfer between the atomic oxygen ion and the neutral particles; and 
U is neutral wind.  An equation similar to Eq. (11) can be obtained for the electrons, and after 
ignoring terms that are multiplied by the electron’s mass, we obtain 

 −∇ ne kBTe( )− ene E +Ve × B( )= 0  (12) 

In addition we also have 

 ne = n, neVe = nV  (13) 

The ion and electron densities are obtained by solving the above equations and making use of the 
empirical or parameterized models of the thermosphere (MSIS) [Hedin et al., 1991], 
thermospheric winds (HWM) [Hedin et al., 1996], solar EUV (SERF2, [Tobiska, 1991]), and 
electric fields [e.g., Heppner and Maynard, 1987; Fejer and Scherliess, 1997].  Given all the 
driving forces, it should be clear that Eq. (11-13) are linear in the ion and electron densities.  
This linearity is broken once more ions are introduced or the conservation of energy equation is 
added.  

Traditionally, these dynamical equations are rewritten in a moving Lagrangian coordinate frame 
[e.g., Bailey et al., 1993]. The motion of this coordinate frame is dictated by the plasma drift 
perpendicular to the geomagnetic field lines.  This approach introduces significant computational 
efficiency by transforming a time-dependent partial differential equation in a 3-dimensional 
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space into a family of time-dependent ordinary differential equations in a 1-dimensional space 
following the moving flux tubes.  However, this approach also introduces significant 
complications for data assimilation, since the measurements are taken in 3-D space across 
different field lines (e.g., TEC from ground-to-satellite or satellite-to-satellite links), making the 
mapping between data and the model parameter space (Eq. 1) very difficult to construct.  This, in 
principle, can be overcome by using two frames: A Lagrangian frame used to solve the 
dynamical Equations (10-13) and an Eulerian frame where a set of voxels, fixed in space and 
time, are  used to solve for the Kalman filter equations (1-8).  Ion and electron densities in the 
two frames can be related to each other by means of interpolation.  We refer to this approach as 
the dual-frame approach. 

A more elegant and efficient approach is to solve both the Kalman filter equations and the 
dynamical equations in the same Eulerian frame.  In this case the volume elements used to 
discretize the dynamical equations and to perform the Kalman filter are the same and they are 
defined by the intersection of constant magnetic field lines, constant magnetic potential lines, 
and constant magnetic longitudes.  We refer to this approach as the single-frame approach. 

The USC/JPL GAIM uses the single-frame approach where the Earth’s magnetic field is 
modeled by an eccentric tilted dipole (Fig. 3).  There are two main advantages to the single-
frame over the dual-frame approach. (1) The dual-frame approach requires interpolation of the 
densities back and forth between the two frames at each time update in the Kalman filter.  (2) 
The time update matrix [ ]k ij

Ψ  (used in Eqs. 3,7,8) is by definition equal to the partial derivatives 

1( ) ( )k ki jn n+∂ ∂ , where ni(k+1) and nj(k) are the densities in voxel i at time k+1 and voxel j at 
time k, respectively.  In the single-frame approach, it is possible to mathematically construct this 
matrix of partial derivatives and directly compute it.  In the dual-frame approach, additional 
complications arise in trying to relate the partials of the densities in the Lagrangian frame to 
those in the Eulerian frame.  In the face of these complications, one might have to construct 
[ ]k ij
Ψ  by perturbing nj(k), solving the dynamical forward equations to propagate the state to time 

k+1 and then computing the change in ni(k+1).  This has to be done for one voxel at a time, 
therefore, requiring as many forward runs as the dimension of the state.  Since the single-frame 
approach uses the same voxels to solve the dynamical and Kalman equations, it is possible to 
explicitly form the matrix kΨ without having to run the forward model.  This represent a 
substantial time saving and makes the implementation of the Kalman filter more feasible.  
 
5. Results and Validation 

The USC/JPL GAIM model is now able to assimilate four major data types: absolute slant TEC 
measurements from ground GPS receivers, change in TEC data from GPS occultations, in situ 
electron density measurements, and UV airglow radiances.  Here we present results from  GAIM 
runs when assimilating only ground GPS-based TEC measurements using the band-limited 
Kalman filter for the period May 22-24, 2002.  This period was chosen to assess the performance 
of GAIM on quiet days (22 and 24) and a disturbed day (23).  For each day, nearly 200,000 GPS 
TEC measurements, sampled at 1 measurement every 5 minutes, were available from 98 GPS 
receiver sites using an elevation cutoff of 10 degrees (Figure 4).  These TEC measurements are 
based on dual-frequency phase measurements leveled to the pseudo-range with the GPS 
instrumental biases determined using the JPL Global Ionospheric Map (GIM) technique 
[Mannucci, et al., 1998].  A cross section at a constant geomagnetic longitude of the grid used in 
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the GAIM run is shown in Figure 3.  Table 1 summarizes the boundary of the region used in the 
GAIM run, the vertical and horizontal resolution of the grid and the correlation lengths used in 
each of the radial, longitudinal and latitudinal directions.  Table 2 summarizes the geomagnetic 
conditions for each day.  All three days assumed the same E×B drift climatology (that of June-
solar maximum conditions), MSIS for the neutral densities and temperatures, and HWM for 
neutral wind.  In presenting our results below we distinguish between two different GAIM runs: 
(1) GAIM climatology which refers to the GAIM 3-D densities obtained by running the GAIM 
model without assimilating any data; and (2) GAIM analysis which refers to the GAIM 3-D 
densities obtained by assimilating the ground TEC data described above.  In both cases, GAIM 
yielded a 3-D specification of electron density every 12 minutes for the entire 3 days considered.  
These can be integrated vertically to create global 2-D maps of vertical TEC (VTEC). 
 
The GAIM analyses of electron density were validated in two ways:  (1) comparison of the 
GAIM VTEC maps to the Global Ionospheric Maps (GIMs) computed from the same ground 
GPS TEC data, and (2) comparison of GAIM VTEC values to independent TOPEX 
measurements. 
 
Validation against GIM 
 
GIM is a mapping technique which assumes a thin shell ionospheric model at 450 km.  The 
details of the technique are described in [Mannucci et al.,  1998].  In a nutshell, GIM solves for 
VTEC using a basis set of bi-cubic splines with local support on a spherical shell.  The 2D 
spherical grid is fixed in solar-magnetic coordinates (magnetic local time). By mapping line-of-
sight TEC measurements to VTEC at the ionospheric shell piercing point, GIM solves for VTEC 
on the grid using a square root information filter (SRIF) [Bierman et al., 1977] which is 
equivalent to the Kalman filter.  GIM does not make use of any dynamical model and therefore it 
is entirely data driven.  In regions where there is no data (e.g., gaps in Figure 4), GIM relies on 
persistence in time to obtain a solution for VTEC.  (More specifically, the a priori VTEC value at 
a given vertex is set equal to its value from the previous time step with a covariance that grows 
according to a first-order Gauss-Markov process.)  Since the stations are rotating underneath the 
solar-magnetic reference frame in which the grid is defined, nearly all vertices will have some 
links going through them during the span of a few hours. 
 
Since GIM is a straightforward interpolation of the GPS TEC data using a 2-D shell model, it 
serves as a proxy for the information content of the GPS dataset.  GIM matches the TEC data 
(mapped to vertical) quite well near the GPS sites.  However, GIM interpolation is less accurate 
at distances greater than 1000 km from the nearest site.  Moreover, because of the thin shell 
model used by GIM, horizontal structures in the ionosphere can potentially create artifacts in the 
VTEC maps therefore reducing their accuracy near strong gradient regions.  Both of these 
limitations need to be remembered as we compare GAIM to GIM. 
 
To perform the comparison, a GIM global map is updated every 15 minutes for the May 22-24, 
2002 period and interpolated to the 12-minute GAIM runs for the same period.  Due to space 
limitation, we only show the comparison between GAIM and GIM at one time frame, about the 
middle of the period considered (May 23, 1100 UTC), which exhibits features that are 
representative of all the other time frames. 
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Figure 5.a shows snapshots of VTEC from the GAIM climatology and GIM, along with maps of 
the absolute and relative differences.  The figure illustrates that the GAIM VTEC level before 
data assimilation differs by more than 50% from reality (or at least the GIM proxy) in certain 
regions.  By contrast, differences between GAIM analysis and GIM as seen in Figure 5.b are 
significantly reduced, indicating that the TEC data are being used effectively by GAIM.  Further 
examination of the GAIM analysis shows that GAIM reveals the equatorial anomaly more 
clearly and with higher resolution than GIM (compare left two panels of 5.b).  This is an 
indication that the limitation induced by the GIM’s thin shell model is reduced or eliminated by 
the 3-D GAIM grid.  In addition, since GAIM climatology and GAIM analysis appear to be quite 
different, even in regions where data is sparse (e.g., in equatorial regions over the Atlantic ocean 
and Africa), we conclude that the dynamics introduced by the physical modeling of GAIM plays 
a significant role in the data assimilation. 
 
To appreciate the significance of the role of the physical dynamics used in GAIM, consider the 
following.  Currently, the GAIM Kalman filter only solves for the ion and electron densities and 
does not adjust any of the drivers.  (An extended Kalman filter, where both ion densities and the 
drivers are estimated, is currently under development and will the subject of a future study.)  
Therefore, it is expected that if data stops flowing into GAIM, the GAIM analysis will revert to 
the GAIM climatology on time scales ranging from minutes to several hours.  The wide range of 
time scales is due to the fact that the production, loss, convection, and diffusion of ions respond 
to the various driving forces on different time scales.  For example, the fast recombination rate of 
molecular ions causes the F1 region to disappear quickly at night, while the slower 
recombination rate of atomic ions causes the F2 region to last long after dusk when the radiation 
from the Sun stops.  Even when the driving forces are only approximately correct, the dynamical 
model plays an important role in assigning the correct time scale at different regions and local 
times in the ionosphere.  Effectively, when the time scale is long, the initial condition of the ion 
densities will have a stronger effect on the evolution of the ionosphere, therefore extending the 
influence of data over larger regions.  When the time scale is short, the initial condition of the ion 
densities will have little effect on the evolution of the ionosphere, therefore limiting the influence 
of data to smaller regions. Thus, the model plays a crucial role in assigning the proper time 
correlation length at different local times, heights and latitudes.  This information is completely 
lost if one uses a constant time scale everywhere, as would be the case if no dynamical model is 
used to map the state or the state covariance (Eqs. 7 and 8). 
 
 Time evolution during a magnetic storm 
 
The May period chosen for our analysis was centered around a magnetic storm.  Figure 6 shows 
the hourly Dst for three days starting at 00:00 UT, May 22, 2002 and indicates the onset of a 
magnetic storm at 12:00 UT, May 23.  The three-hour ap and Kp indices for May 23 are given in 
Table 3.  Figure 7 shows hourly GAIM analysis of VTEC for the 23rd at UT = 12:00, 13:00, …, 
17:00, a period which corresponds to the main phase of the storm.   For comparisons we also 
show the corresponding VTEC maps at the same local time for the 22nd as a proxy for the 
expected ionospheric features during a quiet period.  Comparing the two days, a clear 
enhancement of VTEC at the southern geomagnetic equatorial region is seen at 14:00 UT during 
the storm.  Furthermore, at 15:00 UT, an enhancement of the equatorial anomaly extending from 
8:00 to 20:00 local times, can be seen during the storm day relative to the quiet day.  This is 
presumably caused by a storm induced enhancement of the eastward electric field.  Figure 8 
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shows cross sections of GAIM analysis of electron densities at the same universal times as in 
Figure 7 but only for May 23.  The cross sections are taken at 7.5 geographic longitude and 
therefore the local time is given by the UT + 30 minutes.  The features seen in the VTEC maps, 
such as the enhancement of VTEC at 14:00 UT are clearly seen in the densities as well.  
 
Validation against TOPEX 
 
VTEC below the TOPEX track derived from the dual-frequency altimeter has been used 
extensively as an independent data source for validation [Ho et al., 1997; Codrescu et al., 2001; 
Orus et al, 2002].  Given the precision, latitudinal coverage and long time-series of the TOPEX 
data, it offers a unique and powerful means of validation.  When compared to VTEC derived 
from GPS ground data, TOPEX VTEC are especially challenging given that they are 
measurements taken exclusively over the ocean where few GPS stations exist.  Also, validation 
against TOPEX will mainly tell us how well GAIM can retrieve VTEC but does not validate the 
retrieval of densities.  Validation of densities will require a different data source and will be the 
subject of a future investigation.  
 
We start by comparing VTEC from TOPEX, GAIM climatology, GAIM analysis and GIM.  
Figure 8 shows VTEC for 8 out of the 27 TOPEX tracks on May 23, 2002.  Also shown in 
Figure 8 are the tracks of the TOPEX footprint and neighboring GPS stations used in the 
assimilation.  We note the following features in the comparisons: 

1- GAIM climatology matches TOPEX very well in some tracks (e.g., track 10) while it 
differs significantly in others (e.g., 13, 14, 15, 16, 19). 

2- The GAIM analysis is significantly different from the GAIM climatology and compares 
much better with TOPEX (visible in all tracks) indicating that GPS TEC data is being 
assimilated effectively. 

3- The agreement between the GAIM analysis and TOPEX is quite good in many cases 
(e.g., 8, 14, 15, 16, 19). 

4- Whenever an equatorial anomaly appears in TOPEX, it also appears in the GAIM 
analysis, (e.g., 9, 13, 19), in some cases with great fidelity (e.g., 19).   

5- GAIM appears to be able to capture steep VTEC gradients associated with the equatorial 
anomaly better than GIM (e.g., 9, 15, 16, 19).  This is presumably due to the thin shell 
limitation of GIM. 

 
Statistical comparison to TOPEX 
 
To further assess the performance of GAIM, we examine histograms of VTEC difference 
between GAIM climatology and TOPEX (left panels of Figure 9), GAIM analysis and TOPEX 
(middle panels) and GIM and TOPEX (right panels) for all TOPEX tracks during May 22-24, 
2002.  Statistical summaries of the histograms are given in table 4.  We emphasize that the 
VTEC differences between GAIM analysis and TOPEX has a standard deviation of σGAIM/A = 
5.2 TECU (1 TEC Unit = 1016 e/m2) over the three days which is almost three times better than 
the standard deviation for GAIM climatology (σGAIM/C = 13.8 TECU), twice better than IRI (σIRI 
= 9.6 TECU), and slightly superior to GIM (σGIM = 5.6 TECU).  Both GAIM analysis and GIM 
VTEC are biased low by 1-2 TECU relative to TOPEX when it should be high given that 
TOPEX is at 1330 km and GPS is at 20,000 km altitude.  One TECU translates into altimetric 
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range delay of ~2 mm which well within the error budget of TOPEX, therefore the bias could 
very well be due to TOPEX. 
 
6. Conclusions 
 
The USC/JPL GAIM model uses a first-principles physics model of the ionosphere and a band-
limited Kalman filter to assimilate multiple types of ionospheric measurements.  Although one 
could use 2-D and 3-D tomographic inversion techniques to “image” the ionosphere, formal data 
assimilation techniques are required to fully exploit the information in a physics-based model.  
Comparison of GAIM analysis and GIM shows very close agreement, which is a minimum 
requirement for a successful assimilation model given that the two approaches rely on the same 
data source (ground TEC).  However, comparison of GAIM and GIM to TOPEX VTEC indicate 
that GAIM is superior to GIM in that it is able to capture sharp changes in VTEC much better 
than GIM, the latter being limited by the thin shell model and the lack of physics.  Future GAIM 
work will include the validation of electron density and the simultaneous estimation of the ion 
densities and some of the ionospheric drivers by means of an extended Kalman filter. 
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Figure 1. The grid used in modeling the ionosphere representing an Eulerian frame divided 
along constant geomagnetic field lines, constant geomagnetic potential lines, and constant 
geomagnetic longitudes. The ellipsoid represents the “correlation volume” used in setting the 
correlation between neighboring elements for the band-limited Kalman.  An element centered 
at the ellipsoid will have zero covariance with elements outside the volume. 
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Figure 2. An example of a covariance matrix for a 3-D structure with non-zero correlation 
between immediate neighbors. 
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Figure 3:  An example of a cross section at one magnetic longitude of the volume elements 
used in GAIM.  These are defined by intesecting constant magnetic field lines, constant 
magnetic geopotential lines and constant magnetic longitudes.  The vertical axis is alligned 
with the magnetic dipole used to model the Earth’s magnetic field. 
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Figure 4: Coverage from the 98 ground GPS stations used in GAIM.  The contour around 
each station corresponds to the visible region of the ionosphere at 450 km height for a 10 
degree elevation mask. 
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(a) 

 
(b) 

Figure 5:  (a) Comparison of GIM and GAIM climatology at about 1100 UT on May 23, 
2002.  Top-left: Global Ionospheric Map (GIM) of vertical TEC.  Bottom-left: global vertical 
TEC obtained from vertically integrating GAIM climatology runs.  Top-right: the difference 
between GAIM climatology and GIM.  Bottom-right: fractional difference of GAIM 
climatology and GIM (defined as  2[GAIM-GIM]/[GAIM+GIM]). (b) Same as (a) but 
showing the GAIM analysis instead of the GAIM climatology.  The dots indicate the GPS 
ground receivers.  The GAIM analysis shows the equatorial anomaly more distinctly than 
GIM. 
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Figure 6:  Dst values for the period May 22-24, 2002 showing the main phase of a storm 
between 13:00 and 17:00 UT on May 23rd. 
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Figure 7: Hourly global maps of vertical TEC obtained by integrating hourly 3-D GAIM 
analyses for the days indicated on the first row and the UT indicated on the first column.  A 
disturbed day (23rd) is shown next to a quiet day (22nd) for comparison. 
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Figure 7:  Hourly electron density snapshots at 7.5 geographic deg. longitudinal planes obtained 
from the same hourly GAIM analyses shown in Figure 6 for May 23, 2002.  From left to right, 
top to bottom, the UT for each snap shot is 12:00, 13:00, …, 17:00, respectively.  The local time 
is given by UT+30 minutes.  The color scale ranges from 0 (blue) to 2×1012 e/m3 (dark red) with 
some regions indicating over saturation. 
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Figure 8: Comparison of vertical TEC below the TOPEX track for different tracks on May 23, 2002.  To the right of 
each figure is the TOPEX ground marked by UT and neighboring ground GPS receivers used in the assimilation.  
The left panels correspond to ascending TOPEX tracks with an ascending node at ~10 AM local time.  The right 
panels correspond to descending tracks at ~10 PM local time.  
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Figure 9:  Histograms of vertical TEC differences between GAIM climatology, GAIM 
assimilation (i.e., analysis), or GIM and those obtained from TOPEX for the three days May 22-
24, 2002. 
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Table 1. Specifications of the grid and correlation used in the data assimilation run. 
Modeled region longitude range 0-360 deg. 
Modeled region latitude range -85 to 85 N. 
Modeled region altitude range 100-1500 km altitude 
Latitude resolution 5 deg. 
Longitude resolution 15 deg. 
Altitude resolution 80 km 
Total no. of volume elements 
(voxels) 

13,107 
 

Correlation length in latitude 5 deg. 
Correlation length in longitude  15 deg. 
Correlation length in height 80 km 

 
 

Table 2.  Specifications of the physics input for the three days on May, 2002 
Date F10.7 Ap 

May 22, 2002 185.6 8 
May 23, 2002 184.8 78 
May 24, 2002 193.9 2 

 
 

Table 3.  3-hourly ap index on May 23, 2002 
Time, in UTC ap Kp 

01:30 12 3- 
04:30 12 3- 
07:30 7 2 
10:30 111 7- 
13:30 179 8- 
16:30 236 8+ 
19:30 48 5 
22:30 18 3+ 
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Table 4:  Statistics on vertical TEC differences between GAIM climatology (GAIM/C), GAIM analysis 
(GAIM/A), GIM, or IRI and those of TOPEX for the three days of May 22-24, 2002.  The statistics 
include the total number of points for each day (N), the average, the standard deviation, the minimum and 
maximum differences and the RMS. 

Day Quantity N Ave SD Min Max RMS 
22 GAIM/C –TOPEX 3763 2.3 10.8 -32 49.2 11 
22 GAIM/A – TOPEX 3763 -2.0 4.9 -35 41.7 5.3 
22 GIM –TOPEX 3763 -0.6 5.2 -30.7 28 5.2 
22 IRI – TOPEX 3763 0.8 8.3 -38.2 32.5 8.3 
23 GAIM/C –TOPEX 4102 1.6 15.3 -45.5 55.8 15.4 
23 GAIM/A – TOPEX 4102 -1.7 6.1 -30.4 35.1 6.3 
23 GIM –TOPEX 4102 -1.2 5.7 -35 29.3 5.8 
23 IRI – TOPEX 4102 2.2 11.1 -48.2 56.4 11.3 
24 GAIM/C –TOPEX 3901 6.4 14.2 -35 63.9 15.6 
24 GAIM/A – TOPEX 3901 -1.3 4.4 -28.6 36 4.6 
24 GIM –TOPEX 3901 -1.0 5.9 -36.7 36 6.0 
24 IRI – TOPEX 3901 3.3 8.8 -39.5 38.1 9.4 

 
 


